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Abstract
We consider two independent bosonic oscillators immersed in a common bath,
evolving in time with a completely positive, Markovian, quasi-free (Gaussian)
reduced dynamics. We show that an initially separated Gaussian state can
become entangled as a result of a purely noisy mechanism. In certain cases,
the dissipative dynamics allows the persistence of these bath induced quantum
correlations even in the asymptotic equilibrium state.

PACS numbers: 42.50.Dv, 03.65.Ta

1. Introduction

When two non-interacting, independent systems are immersed in a common bath, decoherence
effects are expected to arise counteracting any quantum correlation initially present among the
two subsystems [1–5]. In certain circumstances however, the environment can also enhance
entanglement. Most commonly, this phenomenon is the result of an Hamiltonian coupling
between the two subsystems [6–10] generated by the action of the bath; remarkably, it can also
occur in the Markovian regime through a non-Hamiltonian, purely noisy mechanism [11–22].

This environment induced entanglement generation has been identified so far in models
involving finite-level systems. In this note we shall instead examine the case of simple
infinite-dimensional systems following a purely Markovian dynamics. More specifically, we
shall study the behaviour of two independent bosonic oscillators evolving in time according
to a semigroup of completely positive maps. We shall limit our considerations to the
phenomenologically relevant set of quasi-free (or Gaussian) states [23–29] and to dynamics
that preserve this set, the so-called quasi-free semigroups, whose properties are well studied
in the literature [30, 31].

After a brief review of the theory of quasi-free dynamical semigroups in relation to the
present situation, we shall first discuss the possibility of entanglement creation at the beginning
of the evolution, in the vicinity of the initial time t = 0. Using the partial transposition criterion
for two-mode Gaussian states, we shall derive the condition that assures environment induced
entanglement generation as soon as t > 0.
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Although in general entanglement will keep growing also away from the neighbourhood
of t = 0, the decoherent, noisy character of the environment will eventually set in. Whether
or not quantum correlations are actually left in the asymptotic long time regime is the result
of a delicate balance between entanglement generation and decoherence. It is remarkable that
for certain environments the long time equilibrium state could indeed retain a non-vanishing
entanglement, and an example of this phenomenon is explicitly presented at the end. In view
of the direct phenomenological relevance of Gaussian states in quantum optics, we believe
that these results might be of help in the design and actual realization of quantum devices and
circuits.

2. Gaussian states

As explained in the introductory remarks, we shall study the dynamics of independent
oscillators in weak interaction with a large environment, so that their reduced time
evolution can be well represented by a Markovian, completely positive dynamics. Although
our considerations concerning bath-induced entanglement creation will involve two such
oscillators, for sake of generality this section and the next will let their number n be arbitrary.
The states of this system will be represented by a density matrix ρ, i.e. by a positive Hermitian
operator, with unit trace, acting on the bosonic Hilbert space H. It can be identified with the
tensor product of n independent Fock spaces; they are generated from the vacuum state through
the action of polynomials in the creation a

†
i and annihilation ai, i = 1, 2, . . . , n, operators

pertaining to the single oscillators. These operators obey the standard bosonic oscillator
algebra:

[
ai, a

†
j

] = δij ,
[
a
†
i , a

†
j

] = 0 = [ai, aj ].
In dealing with this algebra, it is useful to adopt the holomorphic representation [32–35];

it allows working with explicit expressions for both states and operators, including the density
matrix ρ. In this formulation, the elements |ψ〉 of the bosonic Hilbert space H are represented
by holomorphic functions ψ(z̄) of the set of n complex variables z̄ = (z̄1, z̄2, . . . , z̄n), with
inner product:3

〈φ|ψ〉 =
∫

ψ∗(z)φ(z̄) exp

(
−

∑
i

z̄izi

)
�i dz̄i dzi, (2.1)

where ∗ signifies complex conjugation. To every operator O acting on H there corresponds
a kernel O(z̄, z) of 2n independent complex variables z̄ = (z̄1, z̄2, . . . , z̄n) and z =
(z1, z2, . . . , zn), such that for the state |φ〉 = O|ψ〉 one finds the representation:

φ(z̄) =
∫

O(z̄, w)ψ(w̄) exp

(
−

∑
i

w̄iwi

)
�i dw̄i dwi. (2.2)

In particular, the creation and annihilation operators, when acting on a state |ψ〉, are realized
by multiplication and differentiation by the variables z̄i :

a
†
i |ψ〉 → z̄iψ(z̄), ai |ψ〉 → ∂

∂z̄i

ψ(z̄), (2.3)

while the identity operator is represented by exp
(∑

i z̄izi

)
.

Among all density matrices ρ for the n oscillators, the so-called quasi-free or Gaussian
states are of particular interest: they can be easily produced in experiments in quantum optics

3 Here and in the following we use the conventions of [32].
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[27–29]. In the holomorphic formulation, they can be defined as possessing a representation
kernel ρ(z̄, z) of generic Gaussian form:

ρ(z̄, z) =
√
N exp

[
−1

2
zT · G−1 · z +

∑
i

z̄izi

]
, (2.4)

where zT is a 2n-dimensional row vector with components (z1, z2, . . . , zn, z̄1, z̄2, . . . , z̄n),
while z is its corresponding column vector (T signifies matrix transposition and · matrix
multiplication). The covariance G is a 2n×2n matrix; with respect to the natural decomposition
zT ≡ (z z̄) into the set of variables zi and z̄i ; it can be conveniently parametrized as

G =
(

α̂ β̂

β̂T α̂∗

)
, (2.5)

where α̂ and β̂ are n×n matrices, with α̂ symmetric and β̂ Hermitian to assure the hermiticity
of ρ. They represent the averages in the given state ρ of quadratic operators in the creation
and annihilation operators:

〈aiaj 〉 ≡ Tr[aiajρ] =
∫

∂2

∂z̄i∂z̄j

[ρ(z̄, z)] exp

(
−

∑
k

z̄kzk

)
�k dz̄k dzk = α̂ij ,

〈
a
†
i a

†
j

〉 ≡ Tr
[
a
†
i a

†
j ρ

] =
∫

z̄j z̄j ρ(z̄, z) exp

(
−

∑
k

z̄kzk

)
�k dz̄k dzk = α̂∗

ij ,

〈
aia

†
j

〉 ≡ Tr
[
aia

†
j ρ

] =
∫

∂

∂z̄i

[z̄j ρ(z̄, z)] exp

(
−

∑
k

z̄kzk

)
�k dz̄k dzk = β̂ij .

(2.6)

As a result of the last relation, the matrix β̂ turns out to be non-negative. For simplicity, in
writing (2.4) we have assumed

〈
a
†
i

〉 = 〈ai〉 = 0; this condition can be easily released starting
with a more general ansatz for ρ(z̄, z), containing in the exponential also linear terms in zi

and z̄i ; it will not be needed for the considerations that follow. The trace condition,

Tr[ρ] =
∫

ρ(z̄, z) e− ∑
i z̄i zi �i dz̄i dzi = 1, (2.7)

further fixes the normalization constant, N = det(G), provided the previous integral makes
sense [32]. Indeed, convergence of (2.7), as well as of the integrals in (2.6), put further
constraints on the entries of the covariance matrix G, or equivalently on those of α̂ and β̂.
As similarly done with the vector z, let us collect the 2n annihilation and creation operators
ai and a

†
i into the column vector a and its Hermitian conjugate row vector a† ≡ (

a
†
i ai

) =(
a
†
1, a

†
2, . . . , a

†
n, a1, a2, . . . , an

)
. Then, necessarily, the following 2n × 2n matrix of bilinear

expectation values is non-negative:〈
aµa†

ν

〉 ≡ Tr
[
aµa†

νρ
]

� 0, µ, ν = 1, 2, . . . , 2n. (2.8)

It turns out that (2.8) is also a sufficient condition for the expression in (2.4) to represent a
physical state [23, 36–38].

It is customary to rewrite this condition in terms of the 2n × 2n matrix V of symmetric
bilinears:

Vµν = 1

2

〈{
aµ, a†

ν

}〉 ≡ 1

2
Tr

[(
aµa†

ν + a†
νaµ

)
ρ
]; (2.9)

in terms of the natural decomposition of a† ≡ (
a
†
i ai

)
into the set of all creation and annihilation

operators, it can be explicitly written as

V =
(

β̂ α̂

α̂∗ β̂T

)
− 1

2
. (2.10)
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Introducing also the 2n × 2n matrix of commutators

Σµν ≡ 〈[
aµ, a†

ν

]〉 =
(

1 0
0 −1

)
, (2.11)

one can finally express the positivity condition (2.8) as

V +
Σ
2

� 0. (2.12)

In the following, we shall limit our considerations to the set of Gaussian states, i.e. to the
states ρ represented by kernels of the form (2.4) satisfying the condition (2.8), or equivalently
(2.12).

A particularly important class of Gaussian states are the pure ones. In the holomorphic
representation they are described by properly normalized Gaussian functions of the
variables z̄i :


�(z̄) = det1/4(1 − �∗�) exp

−1

2

n∑
i,j=1

z̄i�ij z̄j

 , (2.13)

with � being a complex, symmetric matrix, such that |�| � 1 to guarantee norm convergence.
The corresponding kernel ρ(z̄, z) ≡ 
�(z̄)
∗

�(z) can be cast in the form (2.4), with submatrix
coefficients α̂ = −�(1 − �∗�)−1 and β̂ = (1 − �∗�)−1, respectively.

3. Quasi-free quantum dynamical semigroups

Our analysis is based on the assumption that the time evolution of the set of independent
oscillators immersed in the common bath be Markovian and given by a quantum dynamical
semigroup; this is a completely positive, trace preserving, one parameter family of linear
maps, acting on the set of density matrices ρ representing the oscillator states. These maps
are generated by equations of the following Kossakowski–Lindblad form [39–41]:

∂ρ(t)

∂t
= L[ρ(t)] ≡ −i

[
H, ρ(t)

]
+ L[ρ(t)], (3.1)

with H being an effective Hamiltonian and L a dissipative piece that can be abstractly written
as

L[ρ] =
∑

k

(
LkρL

†
k − 1

2

{
L

†
kLk, ρ

})
(3.2)

in terms of a collection of suitable, well-behaved operators Lk .
Being interested in the set of Gaussian states, we would like to characterize those quantum

dynamical semigroups that preserve that set. Although already discussed using abstract,
mathematically rigorous techniques [30, 31], this problem has a simple and direct solution in
the holomorphic representation: the semigroup generated by (3.1) leaves the form (2.4) for ρ

invariant provided Lk is a linear and H a quadratic combination of the creation and annihilation
operators. Indeed, only in this case the rhs of (3.1) is quadratic in the variables z̄i and their
derivatives when acting on the representation kernel ρ(z̄, z), thus preserving its generic form
(2.4); as a consequence, the evolution equation (3.1) reduces to a linear, differential equation
for the entries α̂ and β̂ of the covariance matrix G (given explicitly in (3.7) below).

In view of this result, the effective Hamiltonian will be taken to have the generic quadratic
form

H = 1

2

n∑
i,j=1

ω̂ij

{
a
†
i , aj

}
, (3.3)
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with the matrix ω̂ being Hermitian and positive. Note that terms containing aiaj and
their Hermitian conjugate can be eliminated by a suitable unitary canonical transformation
[32, 34, 35], and therefore do not appear in (3.2). Similarly, the most general allowed
dissipative term takes the following form:

L[ρ] = 1

2

n∑
i,j=1

{
η̂ij

([
ajρ, a

†
i

]
+

[
aj , ρa

†
i

])
+ σ̂ij

([
a
†
j ρ, ai

]
+

[
a
†
j , ρai

])
+ λ̂ij ([ajρ, ai] + [aj , ρai]) + λ̂

∗
ji

([
a
†
j ρ, a

†
i

]
+

[
a
†
j , ρa

†
i

])}
, (3.4)

where the n × n coefficient matrices η̂, σ̂ and λ̂ encode the physical properties of the
environment and can be expressed in terms of the Fourier transform of the correlation functions
in the bath [1–5].

These parameters are not completely arbitrary. First of all, η̂ and σ̂ need to be Hermitian
in order to comply with the hermiticity preserving requirement of the generated semigroup. In
addition, the request of complete positivity gives rise to further constraints. Indeed, by using
the 2n-dimensional vectors a and a† introduced in the previous section, the dissipative term
in (3.4) can be recast in compact form as

L[ρ] =
2n∑

µ,ν=1

Cµν

(
aνρa†

µ − 1

2

{
a†

µaν, ρ
})

, (3.5)

where the bath coefficients are now embedded in the 2n×2n Kossakowski matrix C. It is well
known that the requirement of complete positivity of the dynamics generated by a dissipative
term L[ρ] in the form (3.5) is equivalent to the positivity of the Kossakowski matrix [39–41];
in the present case, using the block decomposition introduced before in writing (2.10), this
condition explicitly reads

C =
(

η̂ λ̂†

λ̂ σ̂

)
� 0. (3.6)

The finite-time evolution maps obtained from equation (3.1), with the Hamiltonian as
in (3.3) and the dissipative term as in (3.5), with C � 0, are known in the literature as quasi-
free quantum dynamical semigroups [30, 31]: as already observed, they are characterized by
the property of transforming the set of quasi-free (Gaussian) states into itself.

Inserting the general ansatz (2.4) for the kernel ρ(z̄, z; t) in the evolution equation (3.1),
with (3.3) and (3.4), and using the prescriptions (2.3), one easily derives the equation obeyed
by the time-dependent covariance G(t), or equivalently those for the submatrices α̂ and β̂.
It can be more conveniently rewritten as an equation for the symmetric covariance matrix V
introduced in (2.9):

∂tV(t) = A† · V(t) + V(t) · A + B. (3.7)

The 2n × 2n matrices A and B contain the dependence on the Hamiltonian ω̂ij and dissipative
coefficients η̂ij , σ̂ij , λ̂ij ; using the same decomposition introduced in the definition of V
in (2.9), one explicitly finds

A = 1

2

(
σ̂ ∗ − η̂ + 2iω̂ −2(λ̂(A))∗

−2λ̂(A) σ̂ − η̂∗ − 2iω̂∗

)
B = 1

2

(
σ̂ ∗ + η̂ −2(λ̂(S))∗

−2λ̂(S) σ̂ + η̂∗

)
, (3.8)

where λ̂
(S)
ij and λ̂

(A)
ij are respectively the symmetric and antisymmetric parts of the complex

matrix λ̂ij .
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The evolution equation (3.7) has been originally derived using the equivalent Heisenberg
picture where the time-evolution affects the observables O instead of the states ρ; the two
pictures are connected by the duality relation involving expectation values

〈O〉(t) = Tr[γt (ρ)O] = Tr[ρ�t(O)], (3.9)

the semigroup γt is generated by (3.1), while �t by the dual equation:

∂O(t)

∂t
= i[H,O(t)] +

2n∑
µ,ν=1

Cµν

(
a†

µO(t)aν − 1

2

{
a†

µaν,O(t)
})

. (3.10)

Recalling definition (2.9) and inserting in place of O suitable bilinears in the creation and
annihilation operators, one sees that indeed the above equation readily implies (3.7).

Being a first-order differential equation involving finite-dimensional matrices, the
evolution equation (3.7) can be easily integrated. Its solution involves the exponentiation
of A and it explicitly reads

V(t) = etA† · V(0) · etA +
∫ t

0
dτ eτA† · B · eτA. (3.11)

In the following sections, the dynamical evolution given by (3.11) will be used to investigate
whether and under what conditions it can give rise to entanglement enhancement.

4. Environment induced entanglement generation

In order to study the possibility of entanglement generation by the external bath, it suffices
to consider a system formed by two oscillators. Henceforth, we specialize n = 2, so that the
covariance V, as well as the Kossakowski C and the coefficients A, B, all become 4×4 matrices,
and correspondingly η̂, σ̂ and λ̂ result in 2 × 2 matrices. We shall concentrate our attention on
discussing bath assisted entanglement production by purely dissipative mechanism; we shall
therefore ignore any Hamiltonian coupling between the two oscillators, setting in particular
ω̂ij = 0.4

Let us first analyse the possibility of entanglement creation at the beginning of the
evolution, in the neighbourhood of t = 0. As an initial state of the two-oscillator system we
shall choose a kernel ρ(z̄, z; 0) representing a separable Gaussian state and use the partial
transposition criterion [42, 43] to check whether ρ(z̄, z; t) becomes entangled at a later time t.

As is well known, in quantum mechanics the operation of full transposition on any
state ρ corresponds to the time-reversal transformation: it can be easily implemented in
the holomorphic representation through the variable exchange z̄i ↔ zi in the kernel ρ(z̄, z).
Recalling the expression in (2.4), this exchange equivalently corresponds to the transformations
α̂ ↔ α̂∗ and β̂ ↔ β̂T on the submatrices defining the covariance G, and thus to the exchange
ai ↔ a

†
i in the definition (2.9) of symmetric covariance V. Clearly, the transformed V still

satisfies the positivity condition (2.12) if the original covariance does, so that full transposition
maps the set of Gaussian density matrices into itself.

This is not the case for the operation of partial transposition, i.e. of transposition involving
only one of the two oscillator system, say the first one, so that z̄1 ↔ z1. It clearly maps states
into states for separable ones, but not in general for correlated ones: it thus provides a sufficient
criterion for bipartite entanglement in any dimensions.

4 The entanglement power of purely Hamiltonian couplings have been extensively studied in the literature,
e.g. see [6–10].
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For the case at hand, one finds that the operation of partial transposition with respect to
the first system results in the following transformation of the 4 × 4 symmetric covariance:

V → Ṽ = T · V · T, T =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 . (4.1)

We have seen that in order for a Gaussian kernel ρ(z̄, z) in (2.4) to represent a state, the
condition (2.12) on its corresponding symmetric covariance V needs to be satisfied; if one
further finds:

Ṽ +
Σ
2

< 0, (4.2)

then the state is surely entangled. In the two-mode case we are studying, also the converse
is true, namely, if V represents the symmetric covariance of an entangled Gaussian state,
then (4.2) is necessarily satisfied [44].

In the case of the quasi-free Markovian dynamics in (3.11), instead of dealing directly
with the behaviour in time of Ṽ(t) and the inequality (4.2), we find it more convenient to
consider the scalar quantity:

Q(t) = 〈
|
(

Ṽ(t) +
Σ
2

)
|
〉, (4.3)

where |
〉 is a four-dimensional complex vector, chosen in the null eigenspace of the matrix
Ṽ(0) + Σ/2, so that Q(0) = 0. Then, the two oscillators, initially prepared in a separable
Gaussian state, will start to become correlated by the noisy dynamics induced by the bath in
which they are immersed if a suitable vector |
〉 exists such that:

∂tQ(0) < 0. (4.4)

By applying the partial transposition operation T to both sides of (3.7) and defining:

|
̃〉 = T|
〉, Σ̃ = T · Σ · T =
(−σ3 0

0 σ3

)
, (4.5)

with σ3 being the third Pauli matrix, the condition (4.4) can be cast in the following form:

2〈
̃|B|
̃〉 < 〈
̃|[A† · Σ̃ + Σ̃ · A]|
̃〉, (4.6)

explicitly showing the dependence on the bath through the presence of the coefficient matrices
A and B.

As initial state for the two oscillators we take a separable state that is also pure; this is
by no means a restriction: if the bath is not able to entangle pure states, it will surely not
correlate their mixtures. Gaussian pure states are represented by holomorphic functions of the
form (2.13), where now the matrix � is two dimensional. Separability further imposes the
vanishing of the off-diagonal elements, so that � = diag(�1,�2), with |�i | � 1 to assure a
finite state norm. Similarly, also the 2 × 2 submatrix α̂ and β̂, defining the covariances G and
V, turn out to be diagonal:

α̂ =
(

�1
1−|�1|2 0

0 �2
1−|�2|2

)
, β̂ =

( 1
1−|�1|2 0

0 1
1−|�2|2

)
. (4.7)

The condition (2.12),

V +
Σ
2

=
(

β̂ α̂

α̂∗ β̂T − 1

)
� 0, (4.8)
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that assures the positivity of the corresponding Gaussian state, gives again the constraints
|�i | � 1, as it should, since (4.8) is equivalent to norm convergence.

The null subspace of the combination V + Σ/2 in (4.8) is two dimensional; it is spanned
by the vector |
〉 of components (a�∗

1, b�2, a, b), with a and b being arbitrary complex
parameters. Then, entanglement between the two oscillators will surely occur in baths for
which (4.6) is satisfied with this choice of |
〉.

To show that indeed this is possible, let us initially prepare the two oscillators in their
corresponding zero-temperature Fock vacua, so that �1 = �2 = 0. By further choosing the
parameters a and b real and equal, one finds that the inequality (4.6) reduces to

σ̂11 + σ̂22 < Re(λ̂12 + λ̂21), (4.9)

involving the entries of the 2 × 2 matrices σ̂ and λ̂ that appear in the Kossakowski matrix C
in (3.6). As discussed in section 3, the matrix C parametrizes the physical properties of the
bath: it needs to be positive in order to comply with the requirement of complete positivity
of the reduced dynamics of the two oscillators. Therefore, in order to be sure that baths
satisfying (4.9) can actually be constructed, one needs to check the compatibility of (4.9) with
the condition of positivity of the Kossakowski matrix. To explicitly show this, it is enough to
take the matrices η̂ and σ̂ diagonal and λ̂ real, with only the entry λ̂21 nonvanishing. Then,
the condition C � 0 simply gives η̂11 � 0, η̂22 � 0, σ̂11 � 0, σ̂22 � 0 and λ̂2

21 � η̂22σ̂11.
Combining these conditions with that in (4.9), one obtains (for σ̂11 �= 0):

1 +
σ̂22

σ̂11
<

λ̂21

σ̂11
�

(
η̂22

σ̂11

)1/2

. (4.10)

As a consequence, in order to be able to correlate the two oscillators, originally prepared in
the separated Fock vacuum, it is sufficient to immerse them in a bath for which λ21 is as in
(4.10) and η̂22 greater than (σ̂11 + σ̂22)

2/σ̂11.
Environments that are able to entangle two oscillators that are prepared in separable

temperature states can similarly be found. They are characterized by a Kossakowski matrix
of the form:

C =
(

η λ∗

λ σ

)
⊗

(
1 1
1 1

)
, (4.11)

where the parameters η and σ are real and positive, while λ is complex, satisfying the positivity
condition: |λ|2 � ησ . The initial state covariance is characterized by submatrices α̂ and β̂

as in (4.7); for simplicity, let us assume the single oscillator states to be equal, so that
�1 = �2 = �. By taking the norm of the parameters a and b appearing in the vector |
〉
to satisfy |a| = |b| = 1/

√
2, and further adjusting their phases and that of λ according to

the relation Arg(λ) = Arg(a) − Arg(b) = π − Arg(�), one checks that the condition (4.6)
assuring entanglement generation can be fulfilled by choosing

|λ| >
σ − |�|η
1 − |�| , (4.12)

which is compatible with the positivity condition of the above Kossakowski matrix provided
we further take η > σ .

5. Asymptotic entanglement

In the previous section we have discussed examples of baths capable of correlating two
independent oscillators through a purely noisy mechanism: no direct Hamiltonian couplings
between the two subsystems were present. This happens at the beginning of the evolution,
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as soon as t > 0. The test (4.4), on which this conclusion is based, is however unable to
determine the fate of this entanglement as time becomes large.

On general grounds, one expects that the effects of decoherence, counteracting
entanglement production, are dominant in the large time region, so that no quantum correlation
is expected to be left at infinity. Nevertheless, there are situations in which entanglement is
found to keep growing, reaching at the end an asymptotic non-vanishing value. An example is
provided by baths for which the corresponding Kossakowski matrix takes the form in (4.11).

In this case, the evolution equation (3.1) can be rewritten in a simplified form by
introducing the following set of independent oscillator variables:

A = a1 + a2√
2

B = a1 − a2√
2

A† = a
†
1 + a

†
2√

2
B† = a

†
1 − a

†
2√

2
, (5.1)

so that [A,A†] = [B,B†] = 1 and all other commutators vanish. Then, taking into
account (4.11), one finds that equation (3.1) only involves the operators A and A†:

∂ρ

∂t
= −iω[A†A, ρ] + L[ρ(t)], (5.2)

where,

L[ρ] = η([Aρ,A†] + [A, ρA†]) + σ([A†ρ,A] + [A†, ρA]) − λ[A, [A, ρ]] − λ∗[A†, [A†, ρ]].

(5.3)

For sake of generality, we have also included an Hamiltonian contribution; it comes from an
effective Hamiltonian of the form (3.3), where, in analogy to (4.11), the 2 × 2 matrix ω̂ is
taken to be

ω̂ij = ω

(
1 1
1 1

)
, ω > 0. (5.4)

The general solution of the now single-oscillator dissipative evolution (5.2), (5.3), can be
expressed in Gaussian form, using the holomorphic representation involving just one complex
variable: A† → z̄, A → ∂/∂z̄. It can be explicitly expressed in terms of the analogues of
the bilinears introduced in (2.6), now just numbers, α ≡ 〈A2〉 and β ≡ 〈AA†〉, that parametrize
the covariance of the corresponding Gaussian kernel solution ρ(z̄, z; t). Note that we have
〈A〉 = 〈A†〉 = 0 as a consequence of previous choice 〈ai〉 = 〈

a
†
i

〉 = 0. One finds that
the general solution of the evolution equations for α(t) and β(t) derived from (5.2) is given
by [45]:

α(t) = e−2(η−σ+iω)t (α0 − α∞) + α∞, β(t) = e−2(η−σ)t (β0 − β∞) + β∞, (5.5)

where the parameters α0 ≡ α(0) and β0 ≡ β(0) identify the initial values, while

α∞ = λ∗(σ − η + iω)

(η − σ)2 + ω2
, β∞ = η

η − σ
. (5.6)

An asymptotic equilibrium state exists only when η > σ , a condition that it will henceforth be
assumed. Then, the corresponding asymptotic Gaussian kernel is characterized by a covariance
with parameters α and β as in (5.6); it is not a thermal state, unless λ = 0, in which case the
temperature T is given by exp(ω/T ) = η/σ .5

On the other hand, all averages involving B and B† are time independent, since (5.2) does
not contain any dependence from these operators; for simplicity, we shall take them to be all
zero, except for the bilinear 〈BB†〉: for reasons that will appear clear soon, it is assumed to be
equal to β∞, the long-time asymptotic value of 〈AA†〉.
5 Note that this result does not contradict the previous conclusions concerning bath-induced entanglement creation
that in fact requires λ �= 0.
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Applying back the linear transformations (5.1), these results can now be used to study the
evolution of the true physical oscillators, those described by canonical operators ai and a

†
i . As

a result, the two-oscillator state is represented by a time-dependent Gaussian kernel ρ(z̄, z; t)

giving rise to a covariance matrix V(t) as in (2.10):

V(t) =
(

β̂(t) α̂(t)

α̂∗(t) β̂T (t)

)
− 1

2
. (5.7)

Its time dependence is encoded into the two functions defined in (5.5) that appear in the entries
of its two 2 × 2 submatrices α̂ij and β̂ij ; explicitly, one finds

α̂ij (t) = α(t)

2

(
1 1
1 1

)
β̂ij (t) = 1

2

(
β(t) + β∞ β(t) − β∞
β(t) − β∞ β(t) + β∞

)
. (5.8)

For sake of simplicity, we shall further take α(0) ≡ α0 = 0, so that V(0) only involves
β0 and β∞. The parameter β0 is not completely arbitrary: the positivity condition (2.12),
V(0) + Σ/2 � 0, readily implies β0 � 1. Note that this two-mode initial state is mixed
(compare it with the pure case in (4.7)) and further separable; indeed, after applying the partial
transposition operation (4.1), one finds that

Ṽ(0) +
Σ
2

� 0; (5.9)

indeed, this condition is equivalent to the inequality 2β0β∞ � β0 + β∞, always satisfied for
β0, β∞ � 1.

We have previously shown that an environment described by a Kossakowski matrix in the
form (4.11) is able to initially entangle two independent oscillators immersed in it. To see
whether this still holds in the asymptotic long-time regime, one needs to examine the properties
of the covariance V∞ of the corresponding equilibrium state ρ∞(z̄, z), obtained by letting
α(t) → α∞, β(t) → β∞ in the expressions (5.7), (5.8). By using the partial trace criterion,
ρ∞ will be entangled if and only if the 4×4 matrix Ṽ∞ +Σ/2 possesses negative eigenvalues.
In the present case, these eigenvalues can be analytically evaluated to be β∞ ±√

�±/2 − 1/2,
�± = 1 + 2|α∞|2 ± |α∞|(1 + |α∞|2)1/2, for all four possible combinations of the ± signs.
Recalling the definitions (5.6), one easily sees that the lowest eigenvalue β∞ − √

�+/2 − 1/2
can always be made negative by a suitable choice of the bath parameter λ.6

This result is remarkable: it shows that a dissipative quasi-free dynamics, generated by
an equation of the form (3.1), (3.4), can produce quantum correlations even for large times,
allowing at the end an entangled equilibrium state. In view of the increasing interest that the
theory of quantum information with continuous variables is presently attracting, these results
may be relevant both in phenomenological and experimental applications. In particular, the
possibility of maintaining bipartite entanglement in a noisy environment even for asymptotic
long times may help the actual realizations of simple quantum devices in quantum optics and
condensed matter physics.

Note added in proof. The idea that dissipation can assist the generation of entanglement was first introduced in [46] and
further developed in [47]. We point out that the physical contexts there discussed are however different from ours.
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[26] Englert B-G and Wódkiewicz K 2003 Int. J. Quant. Inf. 1 153
[27] Serafini A, Paris M, Illuminati F and De Siena S 2005 J. Opt. B 7 R19
[28] Ferraro A, Olivares S and Paris M 2005 Gaussian States in Continuous Variable Quantum Information (Napoli:

Bibliopolis)
[29] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[30] Demoen B, Vanheuverzwijn P and Verbeure A 1979 Rep. Math. Phys. 15 27
[31] Vanheuverzwijn P 1978 Ann. Inst. Henri Poincaré A 29 123
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